Epub – Philosophical Transactions of the Royal Society of London, Series B
Monoamine Abnormalities in the SAPAP3 Knockout Model of Obsessive-Compulsive Disorder-Related Behaviour

January 19, 2018

Wood J, LaPalombara Z, Ahmari SE

Obsessive-compulsive disorder (OCD) is a leading cause of illness-related disability, but the neural mechanisms underlying OCD symptoms are unclear. One potential mechanism of OCD pathology is monoamine dysregulation. Because of the difficulty of studying monoamine signalling in patients, animal models offer a viable alternative to understanding this aspect of OCD pathophysiology. We used HPLC to characterize post-mortem monoamine levels in lateral orbitofrontal cortex (OFC), medial OFC, medial prefrontal cortex and dorsal and ventral striatum of SAPAP-3 knockout (KO) mice, a well-validated model of compulsive-like behaviours in OCD. As predicted from previous studies, excessive grooming was significantly increased in SAPAP-3 KO mice. Overall levels of the serotonin metabolite 5-hydroxyindoleacetic acid (HIAA) and the ratio of 5HIAA/serotonin (serotonin turnover) were increased in all cortical and striatal regions examined. In addition, dihydroxyphenylacetic acid/dopamine ratio was increased in lateral OFC, and HVA/dopamine ratio was increased in lateral and medial OFC. No baseline differences in serotonin or dopamine tissue content were observed. These data provide evidence of monoaminergic dysregulation in a translational model of OCD symptoms and are consistent with aberrant cortical and striatal serotonin and dopamine release/metabolism in SAPAP-3 KO mice. These results are guiding ongoing experiments using circuit and cell-type specific manipulations of dopamine and serotonin to determine the contributions of these monoaminergic systems to compulsive behaviours, and serve here as a touchstone for an expanded discussion of these techniques for precise circuit dissection.

Wood J, LaPalombara Z, Ahmari SE. Monoamine Abnormalities in the SAPAP3 Knockout Model of Obsessive-compulsive Disorder-related Behaviour. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences. 2018; 373(1742). PubMed PMID: 29352023.
https://www.ncbi.nlm.nih.gov/pubmed/?term=29352023

 

Translational Neuroscience Program

Understanding the Brain
to Improve Mental Health

 

 

 

 

© 2024 University of Pittsburgh

            a

Assistant Director
slovsl@upmc.edu

            a

University of Pittsburgh
3811 O'Hara Street, BST W1651
Pittsburgh, PA 15213

            a

University of Pittsburgh
Department of Psychiatry

W1651 Biomedical Science Tower
203 Lothrop Street
Pittsburgh, PA 15213

Bridgeside Point II, Suite 223
450 Technology Drive
Pittsburgh, PA 15219

a

412-624-3894