Epub – Neuron
Acute restraint stress redirects prefrontal cortex circuit function through mGlu5 receptor plasticity on somatostatin-expressing interneurons

January 13, 2022

Joffe ME, Maksymetz J, Luschinger JR, Dogra S, Ferranti AS, Luessen DJ, Gallinger IM, Xiang Z, Branthwaite H, Melugin PR, Williford KM, Centanni SW, Shields BC, Lindsley CW, Calipari ES, Siciliano CA, Niswender CM, Tadross MR, Winder DG, Conn PJ

Inhibitory interneurons orchestrate prefrontal cortex (PFC) activity, but we have a limited understanding of the molecular and experience-dependent mechanisms that regulate synaptic plasticity across PFC microcircuits. We discovered that mGlu5 receptor activation facilitates long-term potentiation at synapses from the basolateral amygdala (BLA) onto somatostatin-expressing interneurons (SST-INs) in mice. This plasticity appeared to be recruited during acute restraint stress, which induced intracellular calcium mobilization within SST-INs and rapidly potentiated postsynaptic strength onto SST-INs. Restraint stress and mGlu5 receptor activation each augmented BLA recruitment of SST-IN phasic feedforward inhibition, shunting information from other excitatory inputs, including the mediodorsal thalamus. Finally, studies using cell-type-specific mGlu5 receptor knockout mice revealed that mGlu5 receptor function in SST-expressing cells is necessary for restraint stress-induced changes to PFC physiology and related behaviors. These findings provide new insights into interneuron-specific synaptic plasticity mechanisms and suggest that SST-IN microcircuits may be promising targets for treating stress-induced psychiatric diseases.

Joffe ME, Maksymetz J, Luschinger JR, Dogra S, Ferranti AS, Luessen DJ, Gallinger IM, Xiang Z, Branthwaite H, Melugin PR, Williford KM, Centanni SW, Shields BC, Lindsley CW, Calipari ES, Siciliano CA, Niswender CM, Tadross MR, Winder DG, Conn PJ. Acute restraint stress redirects prefrontal cortex circuit function through mGlu5 receptor plasticity on somatostatin-expressing interneurons. Neuron. 2022 Jan 13;S0896-6273(21)01044-8. doi: 10.1016/j.neuron.2021.12.027. [Epub ahead of print]. PubMed PMID: 35045338.

https://pubmed.ncbi.nlm.nih.gov/35045338/

Translational Neuroscience Program

Understanding the Brain
to Improve Mental Health

 

 

 

 

© 2024 University of Pittsburgh

            a

Assistant Director
slovsl@upmc.edu

            a

University of Pittsburgh
3811 O'Hara Street, BST W1651
Pittsburgh, PA 15213

            a

University of Pittsburgh
Department of Psychiatry

W1651 Biomedical Science Tower
203 Lothrop Street
Pittsburgh, PA 15213

Bridgeside Point II, Suite 223
450 Technology Drive
Pittsburgh, PA 15219

a

412-624-3894